Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
Aquat Toxicol ; 269: 106867, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432024

RESUMO

Sea turtle mortality is often related to materials that reach the coast from different anthropic activities worldwide. This study aimed to investigate whether sea turtle mortality was related to older marine problems, such as solid waste, or one of the largest oil spill accidents on the Brazilian coast, that occurred in 2019. We posed three questions: 1) Are there solid residues in the digestive tract samples, and which typology is the most abundant? 2) Can meso­ and macro-waste marine pollutants cause mortality? 3) Is the dark material found really oil? A total of 25 gastrointestinal content (GC) samples were obtained, of which 22 ingested waste of anthropogenic origin and 18 were necropsied. These 22 samples were obtained during or after the 2019 oil spill, of which 17 specimens were affected, making it possible to suggest oil ingestion with the cause of death in the animals that could be necropsied. Macroscopic data showed that the most abundant solid waste was plastic (76.05 %), followed by fabrics (12.18 %) and oil-like materials. However, chemical data confirmed only three specimens with oil levels ranging from remnants to high. It was possible to infer possible causes of death in 16 of the total 18 necropsied cases: Most deaths were due to respiratory arrest (62.5 %), followed by pulmonary edema (12.5 %), cachexia syndrome (12.5 %), circulatory shock (6.25 %), and head trauma (6.25 %), which may have been caused by contact with solid waste, oil, or both. The study showed that not all dark material found in the GCs of turtles killed in oiled areas is truly oil, and in this sense, a chemical analysis step to prove the evidence of oil must be added to international protocols.


Assuntos
Poluição por Petróleo , Tartarugas , Poluentes Químicos da Água , Animais , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Conteúdo Gastrointestinal/química , Brasil , Poluentes Químicos da Água/toxicidade , Resíduos Sólidos/análise , Plásticos , Ingestão de Alimentos
2.
Environ Manage ; 73(5): 973-984, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38349518

RESUMO

Millions of tonnes of oil lie entombed within wrecks from two world wars which, when released, can cause environmental devastation. Wrecks are predominantly risk assessed by the Global North Nations responsible, resulting in an epistemology that separates human from nature. This research aimed to decolonise risk assessments to capture the spatially heterogeneous nature of human vulnerability to oil pollution. Triangulation analysis of interviews and official reports relating to the USS Mississinewa oil spill identified three Global South issues a Eurocentric risk assessment failed to capture: region-specific meteorological conditions causing the leak, remoteness making external resources slow to arrive, and the impact of the fishery closure on traditional subsistence lifestyles. A vulnerability assessment is proposed to prioritise wrecks in susceptible locations. Recommendations are made for a collaborative approach to wreck management by including local voices, resisting the Global North assumption of generality, and recognising the priorities of those living with wrecks.


Assuntos
Poluição por Petróleo , Humanos , Medição de Risco , Poluição por Petróleo/efeitos adversos , Micronésia , Monitoramento Ambiental
3.
Sci Rep ; 14(1): 3591, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351213

RESUMO

Anthropogenic activities have been shown to significantly affect marine life. Water pollution and oil spills are particularly deleterious to the fish population, especially during their larval stage. In this study, Sobaity-sea bream Sparidentex hasta (Valenciennes, 1830) larvae were exposed to serial dilutions of water-accommodated fraction of Kuwait crude oil (KCO-WAF) for varying durations (3, 6, 24, 48, 72 or 96 h) in acute exposure regime. Gene expression was assessed using RNA sequencing and validated through RT-qPCR. The RNA sequencing data were aligned to the sequenced genome, and differentially expressed genes were identified in response to treatment with or without KCO-WAF at various exposure times. The highest number of differentially expressed genes was observed at the early time point of 6 h of post-exposure to KCO-WAF. The lowest number of differentially expressed genes were noticed at 96 h of treatment indicating early response of the larvae to KCO-WAF contaminant. The acquired information on the differentially expressed genes was then used for functional and pathway analysis. More than 90% of the differentially expressed genes had a significant BLAST match, with the two most common matching species being Acanthopagrus latus and Sparus aurata. Approximately 65% of the differentially expressed genes had Gene Ontology annotations, whereas > 35% of the genes had KEGG pathway annotations. The differentially expressed genes were found to be enriched for various signaling pathways (e.g., MAPK, cAMP, PI3K-Akt) and nervous system-related pathways (e.g., neurodegeneration, axon guidance, glutamatergic synapse, GABAergic synapse). Early exposure modulated the signaling pathways, while KCO-WAF exposure of larvae for a longer duration affected the neurodegenerative/nervous system-related pathways. RT-qPCR analysis confirmed the differential expression of genes at each time point. These findings provide insights into the underlying molecular mechanisms of the deleterious effects of acute exposure to oil pollution-on marine fish populations, particularly at the early larval stage of Sparidentex hasta.


Assuntos
Perciformes , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Petróleo/toxicidade , Petróleo/análise , Água/análise , Larva/genética , Kuweit , Fosfatidilinositol 3-Quinases , Peixes , Perfilação da Expressão Gênica , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise
4.
Sci Total Environ ; 912: 168801, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38008335

RESUMO

The Hebei Spirit oil spill accident occurred in December 2007, approximately 10 km off the coast of Taean, South Korea, a location notably close to residential areas. Crude oil substances have been detected in various environmental mediums since the accident, yet previous studies have primarily focused on the acute effects of oil exposure due to the short latency period of allergic diseases. Therefore, this study evaluated the long-term effects of oil spill exposure on allergic disorders. Our study included adult residents who had participated in the Health Effects Research on Hebei Spirit Oil Spill (HEROS) study up to five years post-incident, which was a prospective cohort to monitor the health status of Taean residents. We used two indicators to assess oil spill exposure, namely the distance from the initial contaminated coastline to each participant's residence and the number of days participants had engaged in oil clean-up work. Current symptoms such as asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, and multimorbidity were considered allergic disorders. In the baseline survey, the prevalence of asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, and allergic multimorbidity symptoms was associated with both exposure indicators; however, these associations were not observed in the two consecutive surveys. Significant longitudinal associations between oil spill exposure indicators and the four allergic disorders, as well as multimorbidity incidences, were observed during a five-year follow-up period. Our results suggest that oil spill exposure can affect acute and long-term allergic symptoms in residents near the accident site.


Assuntos
Asma , Conjuntivite Alérgica , Dermatite Atópica , Poluição por Petróleo , Petróleo , Rinite Alérgica , Adulto , Humanos , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Estudos Prospectivos , Incidência , Prevalência , República da Coreia/epidemiologia , Petróleo/análise
5.
Environ Res ; 244: 117965, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38123048

RESUMO

Despite a multi-decade decrease in cardiovascular disease, geographic disparities have widened, with excess mortality concentrated within the United States (U.S.) South. Petroleum production and refining, a major contributor to climate change, is concentrated within the U.S. South and emits multiple classes of atherogenic pollutants. We investigated whether residential exposure to oil refineries could explain variation in self-reported coronary heart disease (CHD) prevalence among adults in southern states for the year 2018, where the majority of oil refinery activity occurs (Alabama, Mississippi, Louisiana, Arkansas, Texas, New Mexico, and Oklahoma). We examined census tract-level association between oil refineries and CHD prevalence. We used a double matching method to adjust for measured and unmeasured spatial confounders: one-to-n distance matching and one-to-one generalized propensity score matching. Exposure metrics were constructed based on proximity to refineries, activities of refineries, and wind speed/direction. For all census tracts within 10 km of refineries, self-reported CHD prevalence ranged from 1.2% to 17.6%. Compared to census tracts located at ≥5 km and <10 km, one standard deviation increase in the exposure within 5 km of refineries was associated with a 0.33 (95% confidence interval: 0.04, 0.63) percentage point increase in the prevalence. A total of 1119.0 (123.5, 2114.2) prevalent cases or 1.6% (0.2, 3.1) of CHD prevalence in areas within 5 km from refineries were potentially explained by exposure to oil refineries. At the census tract-level, the prevalence of CHD explained by exposure to oil refineries ranged from 0.02% (0.00, 0.05) to 47.4% (5.2, 89.5). Thus, although we cannot rule out potential confounding by other personal risk factors, CHD prevalence was found to be higher in populations living nearer to oil refineries, which may suggest that exposure to oil refineries can increase CHD risk, warranting further investigation.


Assuntos
Doença das Coronárias , Poluição por Petróleo , Petróleo , Adulto , Humanos , Estados Unidos , Indústria de Petróleo e Gás , Fatores de Risco , Doença das Coronárias/induzido quimicamente , Doença das Coronárias/epidemiologia , Poluição por Petróleo/efeitos adversos
6.
PLoS One ; 18(11): e0293601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019821

RESUMO

This study focuses on the short-term contamination and associated risks arising from the release of Polycyclic Aromatic Hydrocarbons (PAHs) due to the 2020 Baghjan oil blowout in upper Assam, India. Shortly after the Baghjan oil blowout, samples were collected from water, sediment, and fish species and examined for PAHs contents. The results of the analysis revealed ΣPAHs concentrations ranged between 0.21-691.31 µg L-1 (water); 37.6-395.8 µg Kg-1 (sediment); 104.3-7829.6 µg Kg-1 (fish). The prevalence of 3-4 ring low molecular weight PAHs compounds in water (87.17%), sediment (100%), and fish samples (93.17%) validate the petrogenic source of origin (oil spill). The geographic vicinity of the oil blowout is rich in wildlife; thus, leading to a significant mass mortality of several eco-sensitive species like fish, plants, microbes, reptiles, amphibians, birds and mammals including the Gangetic River dolphin. The initial ecological risk assessment suggested moderate to high-risk values (RQ >1) of majority PAHs concerning fish, daphnia, and algae species. This study highlights the need for recognizing the potential for short-term exposure to local species. To safeguard local ecosystems from potential future environmental disasters, it is imperative for the government to adopt a precautionary strategy.


Assuntos
Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Ecossistema , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Sedimentos Geológicos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Água/análise , Medição de Risco , Índia , Peixes , China , Mamíferos
7.
Sci Total Environ ; 894: 164972, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336396

RESUMO

The Tuscan Archipelago, with its great environmental and economic importance, is one of the highest oil spill density areas in the Western Mediterranean. In this study, an interdisciplinary approach, based on numerical applications and experimental methods, was implemented to quantify the risk of oil spill impact along the rocky shores of this archipelago in relation to the maritime activities. The risk, defined as a combination of the hazard and the damage, was quantified for the biennial 2019-2020 in order to account for the effects generated by the COVID-19 pandemic restrictions on the local maritime traffic. A high-resolution oceanographic and particle tracking model was applied to simulate the trajectories of possible oil spill events and to quantify the hazard of impacts on the coast of numerical particles, daily seeded in correspondence of those marine sectors that are characterised by relevant traffic of vessels. The damage, expressed as the product of exposure and vulnerability, was estimated following an extensive sampling approach aimed at quantifying the ecological status of the rocky shores in four selected islands of the Tuscan Archipelago. Results revealed and quantified the direct relationship between the temporary reduction of the maritime traffic due to the pandemic restrictions, and the probability of suffering damage from oil spill impact along the archipelago's rocky shores, which was highly context-dependent.


Assuntos
COVID-19 , Poluição por Petróleo , Humanos , Poluição por Petróleo/efeitos adversos , Pandemias , COVID-19/epidemiologia , Biodiversidade
8.
Sci Total Environ ; 896: 164981, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37364846

RESUMO

Since the 2019 oil spill on the northeastern coast of Brazil, oil materials have washed up on the beaches. A characteristic of the recent oil spill that began in late August was that some of the oiled material, such as tarballs, contained the goose barnacle species Lepas anatifera (Cirripedia, Lepadomorpha), which is well-known for its cosmopolitan distribution and wide occurrence in the oceans. The findings of this study provide information on the occurrence and contamination of petroleum hydrocarbons in animals adhered to the surfaces of tarballs sampled from beaches in the Brazilian states of Ceará and Rio Grande do Norte, between September and November 2022. The size of the barnacles varied from 0.122 to 2.20 cm, suggesting that the tarballs had been floating in the ocean for at least a month. All groups of L. anatifera collected from the tarballs had polycyclic aromatic hydrocarbons (PAHs) present (∑21PAHs from 476.33 to 3816.53 ng g-1). In comparison to high-molecular-weight PAHs, which are primarily from pyrolytic sources, low-molecular-weight PAHs, such as naphthalene and phenanthrene, which are mostly related to petrogenic sources, were shown to be more abundant. In addition, dibenzothiophene, which is exclusive of petrogenic origin, was found in all samples (30.74-537.76 ng g-1). The aliphatic hydrocarbons (AHs): n-alkanes, pristane, and phytane were also found and displayed petroleum characteristics. These results highlight the danger of increasing the absorption of petrogenic PAHs and AHs by organisms that use tarballs as substrates. L. anatifera is a crucial component of the food chain because many animals such as crabs, starfish, and gastropods consume it.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Thoracica , Poluentes Químicos da Água , Animais , Petróleo/análise , Brasil , Monitoramento Ambiental/métodos , Hidrocarbonetos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Ingestão de Alimentos , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química
9.
Environ Res ; 231(Pt 1): 116069, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149022

RESUMO

BACKGROUND: During the 2010 Deepwater Horizon (DWH) disaster, oil spill response and cleanup (OSRC) workers were exposed to toxic volatile components of crude oil. Few studies have examined exposure to individual volatile hydrocarbon chemicals below occupational exposure limits in relation to neurologic function among OSRC workers. OBJECTIVES: To investigate the association of several spill-related chemicals (benzene, toluene, ethylbenzene, xylene, n-hexane, i.e., BTEX-H) and total petroleum hydrocarbons (THC) with neurologic function among DWH spill workers enrolled in the Gulf Long-term Follow-up Study. METHODS: Cumulative exposure to THC and BTEX-H across the oil spill cleanup period were estimated using a job-exposure matrix that linked air measurement data to detailed self-reported DWH OSRC work histories. We ascertained quantitative neurologic function data via a comprehensive test battery at a clinical examination that occurred 4-6 years after the DWH disaster. We used multivariable linear regression and modified Poisson regression to evaluate relationships of exposures (quartiles (Q)) with 4 neurologic function measures. We examined modification of the associations by age at enrollment (<50 vs. ≥50 years). RESULTS: We did not find evidence of adverse neurologic effects from crude oil exposures among the overall study population. However, among workers ≥50 years of age, several individual chemical exposures were associated with poorer vibrotactile acuity of the great toe, with statistically significant effects observed in Q3 or Q4 of exposures (range of log mean difference in Q4 across exposures: 0.13-0.26 µm). We also observed suggestive adverse associations among those ≥ age 50 years for tests of postural stability and single-leg stance, although most effect estimates did not reach thresholds of statistical significance (p < 0.05). CONCLUSIONS: Higher exposures to volatile components of crude oil were associated with modest deficits in neurologic function among OSRC workers who were age 50 years or older at study enrollment.


Assuntos
Desastres , Poluição por Petróleo , Petróleo , Humanos , Pessoa de Meia-Idade , Poluição por Petróleo/efeitos adversos , Seguimentos , Hidrocarbonetos/toxicidade , Petróleo/toxicidade
10.
J Toxicol Environ Health A ; 86(12): 404-419, 2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37171367

RESUMO

The rise in offshore oil and gas operations, maritime shipping, and tourism in northern latitudes enhances the risk of oil spills to sub-Arctic and Arctic coastal environments. Therefore, there is a need to understand the potential adverse effects of petroleum on key species in these areas. Here, we investigated the effects of oil exposure on the early life stages of capelin (Mallotus villosus), an ecologically and commercially important Barents Sea forage fish species that spawns along the coast of Northern Norway. Capelin embryos were exposed to five different concentrations (corresponding to 0.5-19 µg/L total PAHs) of water-soluble fraction (WSF) of crude oil from 6 days post fertilization (dpf) until hatch (25 dpf), and development of larvae in clean seawater was monitored until 52 dpf. None of the investigated endpoints (embryo development, larval length, heart rate, arrhythmia, and larval mortality) showed any effects. Our results suggest that the early life stages of capelin may be more robust to crude oil exposure than similar life stages of other fish species.


Assuntos
Mallotus (Planta) , Osmeriformes , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Petróleo/toxicidade , Água , Osmeriformes/fisiologia , Larva , Desenvolvimento Embrionário , Poluentes Químicos da Água/toxicidade , Poluição por Petróleo/efeitos adversos
11.
Curr Allergy Asthma Rep ; 23(6): 299-311, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37166706

RESUMO

PURPOSE OF REVIEW: Burning of petroleum products has been consistently associated with adverse respiratory health effects. Combustion of crude oil, specifically, produces toxic byproducts, but there have been relatively few studies of health effects. Burning of crude oil is increasingly employed as a means of mitigating environmental disasters despite the potential health risks to workers involved in clean-up efforts. Here, we review epidemiological studies of respiratory effects following unique crude oil burning events to (1) characterize respiratory health effects from this nontraditional occupational exposure and (2) identify approaches used to characterize exposures that could be applied to future disaster-related studies. RECENT FINDINGS: We searched PubMed and EMBASE for references from inception to January 30, 2023. We also manually screened references cited in eligible articles. We identified 14 eligible publications. Our review suggests that exposure to crude oil combustion has adverse respiratory effects, including reduced lung function and increased occurrence of respiratory symptoms and disease. However, the evidence is inconsistent, and quality of data varied across studies. While some studies used quantitative, modeled exposure estimates, most used self-reported proxies of exposure. Although disasters involving crude oil combustion are relatively rare, limited evidence suggests that some worker populations may be at risk for respiratory effects from burning exposures in disaster settings. Future studies that use improved exposure assessment methods (e.g., personal monitors, remote sensing data) may help further quantify the respiratory risk from crude oil burning exposures.


Assuntos
Desastres , Exposição Ocupacional , Poluição por Petróleo , Petróleo , Transtornos Respiratórios , Doenças Respiratórias , Humanos , Petróleo/efeitos adversos , Poluição por Petróleo/efeitos adversos , Exposição Ocupacional/efeitos adversos , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/etiologia
12.
Aquat Toxicol ; 260: 106580, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37244122

RESUMO

The Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF) created a standardized protocol for comparing the toxicity of physically dispersed oil versus chemically dispersed oil to address environmental concerns related to the proposed use of dispersants in the early 2000s. Since then, many revisions have been made to the original protocol to diversify the intended use of the data generated, incorporate emerging technologies, and to examine a wider range of oil types including non-conventional oils and fuels. Under the Multi-Partner Research Initiative (MPRI) for oil spill research under Canada's Oceans Protection Plan (OPP), a network of 45 participants from seven countries representing government, industry, non-profit, private, and academic sectors was established to identify the current state of the science and formulate a series of recommendations to modernize the oil toxicity testing framework. The participants formed a series of working groups, targeting specific aspects of oil toxicity testing, including: experimental conduct; media preparation; phototoxicity; analytical chemistry; reporting and communicating results; interpreting toxicity data; and appropriate integration of toxicity data to improve oil spill effects models. The network participants reached a consensus that a modernized protocol to assess the aquatic toxicity of oil should be sufficiently flexible to address a broad range of research questions in a 'fit-for-purpose' manner, where methods and approaches are driven by the need to generate scientifically-defensible data to address specific study objectives. Considering the many needs and varied objectives of aquatic toxicity tests currently being conducted to support and inform oil spill response decision making, it was also concluded that the development of a one size fits all approach would not be feasible.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Humanos , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Poluentes Químicos da Água/toxicidade , Óleos , Testes de Toxicidade , Tomada de Decisões , Petróleo/toxicidade
13.
Environ Health Perspect ; 131(5): 57006, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37224072

RESUMO

BACKGROUND: During the 2010 Deepwater Horizon (DWH) disaster, response and cleanup workers were potentially exposed to toxic volatile components of crude oil. However, to our knowledge, no study has examined exposure to individual oil spill-related chemicals in relation to cardiovascular outcomes among oil spill workers. OBJECTIVES: Our aim was to investigate the association of several spill-related chemicals [benzene, toluene, ethylbenzene, xylene, n-hexane (BTEX-H)] and total hydrocarbons (THC) with incident coronary heart disease (CHD) events among workers enrolled in a prospective cohort. METHODS: Cumulative exposures to THC and BTEX-H across the cleanup period were estimated via a job-exposure matrix that linked air measurement data with self-reported DWH spill work histories. We ascertained CHD events following each worker's last day of cleanup work as the first self-reported physician-diagnosed myocardial infarction (MI) or a fatal CHD event. We estimated hazard ratios (HR) and 95% confidence intervals for the associations of exposure quintiles (Q) with risk of CHD. We applied inverse probability weights to account for bias due to confounding and loss to follow-up. We used quantile g-computation to assess the joint effect of the BTEX-H mixture. RESULTS: Among 22,655 workers with no previous MI diagnoses, 509 experienced an incident CHD event through December 2019. Workers in higher quintiles of each exposure agent had increased CHD risks in comparison with the referent group (Q1) of that agent, with the strongest associations observed in Q5 (range of HR=1.14-1.44). However, most associations were nonsignificant, and there was no evidence of exposure-response trends. We observed stronger associations among ever smokers, workers with ≤high school education, and workers with body mass index <30 kg/m2. No apparent positive association was observed for the BTEX-H mixture. CONCLUSIONS: Higher exposures to volatile components of crude oil were associated with modest increases in risk of CHD among oil spill workers, although we did not observe exposure-response trends. https://doi.org/10.1289/EHP11859.


Assuntos
Doença das Coronárias , Infarto do Miocárdio , Poluição por Petróleo , Petróleo , Humanos , Poluição por Petróleo/efeitos adversos , Seguimentos , Estudos Prospectivos , Doença das Coronárias/induzido quimicamente , Doença das Coronárias/epidemiologia , Benzeno
14.
Environ Pollut ; 331(Pt 2): 121859, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236581

RESUMO

Oil spills cause long-lasting mangrove loss, threatening their conservation and ecosystem services worldwide. Oil spills impact mangrove forests at various spatial and temporal scales. Yet, their long-term sublethal effects on trees remain poorly documented. Here, we explore these effects based on one of the largest oil spills ever recorded, the Baixada Santista pipeline leak, which hit the mangroves of the Brazilian southeastern coast in 1983. Historical, Landsat-derived normalized difference vegetation index (NDVI) maps over the spilled mangrove reveal a large dieback of trees within a year following the oil spill, followed by a eight-year recolonization period and a stabilization of the canopy cover, however 20-30% lower than initially observed. We explain this permanent loss by an unexpected persistence of oil pollution in the sediments based on visual and geochemical evidence. Using field spectroscopy and cutting-edge drone hyperspectral imaging, we demonstrate how the continuous exposure of mangrove trees to high levels of pollution affects their health and productivity in the long term, by imposing permanent stressful conditions. Our study also reveals that tree species differ in their sensitivity to oil, giving the most tolerant ones a competitive advantage to recolonize spilled mangroves. By leveraging drone laser scanning, we estimate the loss of forest biomass caused by the oil spill to be 9.8-91.2 t ha-1, corresponding to 4.3-40.1 t C ha-1. Based on our findings, we encourage environmental agencies and lawmakers to consider the sublethal effects of oil spills on mangroves in the environmental cost of these accidents. We also encourage petroleum companies to use drone remote sensing in monitoring routines and oil spill response planning to improve mangrove preservation and impact assessment.


Assuntos
Poluição por Petróleo , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Ecossistema , Tecnologia de Sensoriamento Remoto , Poluição Ambiental/análise , Florestas , Árvores , Monitoramento Ambiental/métodos
15.
Sci Total Environ ; 883: 163812, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37121328

RESUMO

More than 80 % of the primary biomass in marine environments is provided by phytoplankton. The primary mechanism in the trace element sink is the absorption of trace elements by phytoplankton. Because of their difficult degradability and bioaccumulation, petroleum hydrocarbons are one of the most significant and priority organic contaminants in the marine environment. This study chose Chlorella pyrenoidosa as the model alga to be exposed to short and medium-term petroleum hydrocarbons. The ecological risk of accidental and persistent petroleum hydrocarbon contamination was thoroughly assessed. The interaction and intergenerational transmission of phytoplankton physiological markers and trace element absorption were explored to reflect the change in primary biomass and trace element sink. C. pyrenoidosa could produce a large number of reactive oxygen species stimulated by the concentration and exposure time of pollutants, which activated their antioxidant activity (superoxide dismutase (SOD) activity, ß-carotene synthesis, antioxidant trace elements uptake) and peroxides production (hydroxyl radicals and malondialdehyde). The influence of the growth phase on SOD activity, copper absorption, and manganese adsorption in both persistent and accidental pollution was significant (p < 0.05, F > Fα). Adsorption of manganese and selenium positively connected with SOD, malondialdehyde, and Chlorophyl-a (p < 0.01). These findings convincingly indicate that petroleum hydrocarbon contamination can interfere with primary biomass and trace element sinks.


Assuntos
Chlorella , Poluição por Petróleo , Petróleo , Oligoelementos , Biomassa , Manganês , Hidrocarbonetos , Fitoplâncton , Petróleo/toxicidade , Poluição por Petróleo/efeitos adversos , Superóxido Dismutase , Malondialdeído
16.
Ecotoxicology ; 32(4): 502-511, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37118609

RESUMO

Small wild mammals have been used to measure the damage caused by exposure to oil-contaminated soil, including deer mice. However, the study of toxic effects of crude oil using oxidative damage biomarkers in the wild rodent Calomys laucha (Vesper mouse) is absent. This investigation aimed to evaluate the effects of acute exposure to contaminated soil with different concentrations of crude oil (0, 1, 2, 4 and 8% w/w), simulating an accidental spill, using oxidative stress biomarkers in the liver, kidneys, lungs, testes, paw muscle, and lymphocytes of C. laucha. Animals exposed to the contaminated soil showed increases in lipid peroxidation and protein carbonylation at the highest exposure concentrations in most organ homogenates analyzed and also in blood cells, but responses to total antioxidant capacity were tissue-dependent. These results showed that acute exposure to oil-contaminated soil caused oxidative damage in C. laucha and indicate these small mammals may be susceptible to suffer the impacts of such contamination in its occurrence region, threatening the species' survival.


Assuntos
Poluição por Petróleo , Petróleo , Animais , Poluição por Petróleo/efeitos adversos , Estresse Oxidativo , Biomarcadores , Petróleo/toxicidade , Solo , Mamíferos
17.
Artigo em Inglês | MEDLINE | ID: mdl-36921914

RESUMO

Anthropogenic activities primarily combustion of fossil fuel is the prime cause behind the increased concentration of CO2 into the atmosphere. As a consequence, marine environments are anticipated to experience shift towards lower pH and elevated temperatures. Moreover, since the industrial revolution the growing demand for petroleum-based products has been mounting up worldwide leading to severe oil pollution. Sundarbans estuarine system (SES) is experiencing ocean warming, acidification as well as oil pollution from the last couple of decades. Scylla serrata is one of the most commercially significant species for aquaculture in coastal areas of Sundarbans. Thus, the prime objective of this study is to delineate whether exposure under ocean warming and acidification exacerbates effect of oil spill on oxidative stress of an estuarine crab S. serrata. Animals were separately exposed under current and projected climate change scenario for 30 days. After this half animals of each treatment were exposed to oil spill conditions for 24 h. Oxidative stress status superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), lipid peroxidation (LPO level) and DNA damage (Comet assay) were measured. Augmented antioxidant and detoxification enzyme activity was noted except for SOD but failed to counteract LPO and DNA damage. The present results clearly highlighted the detrimental combined effect of OWA and pollution on oxidative stress status of crabs that might potentially reduce its population and affect the coastal aquaculture in impending years.


Assuntos
Braquiúros , Poluição por Petróleo , Poluentes Químicos da Água , Animais , Braquiúros/metabolismo , Poluição por Petróleo/efeitos adversos , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Água do Mar , Antioxidantes/metabolismo , Estresse Oxidativo , Catalase , Biomarcadores/metabolismo , Superóxido Dismutase/farmacologia , Peroxidação de Lipídeos , Poluentes Químicos da Água/toxicidade
18.
Occup Environ Med ; 80(4): 192-195, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36737241

RESUMO

OBJECTIVE: To evaluate the potential for adverse health outcomes among infants born to US Coast Guard (USCG) responders to the Deepwater Horizon (DWH) oil spill disaster. METHODS: Department of Defense Birth and Infant Health Research programme data identified a cohort of singleton infants born 2010-2011 to USCG personnel in the DWH Oil Spill Coast Guard Cohort study. Infants were included if their military parent ('sponsor') responded to the oil spill during a selected reproductive exposure window (ie, 3 months preconception for male sponsors and periconception through pregnancy for female sponsors), or if their sponsor was a non-responder. χ2 tests and multivariable log-binomial regression were used to compare the demographic and health characteristics of infants born to spill responders and non-responders. RESULTS: Overall, 1974 infants with a male sponsor (n=182 responder, n=1792 non-responder) and 628 infants with a female sponsor (n=35 responder, n=593 non-responder) in the DWH Oil Spill Coast Guard Cohort were identified. Health outcomes were similar among the offspring of male responders and non-responders. The frequency of any poor live birth outcome (ie, low birth weight, preterm birth or birth defect) was higher among infants born to female responders (17.1%, n=6) than non-responders (8.9%, n=53); the maternal age-adjusted association was suggestively elevated (risk ratio 1.93, 95% CI 0.89 to 4.16). CONCLUSION: Infant health outcomes were comparable between the offspring of male USCG oil spill responders and non-responders. Findings were limited by the small number of infants identified, particularly among female responders, and should be interpreted with caution.


Assuntos
Militares , Poluição por Petróleo , Nascimento Prematuro , Recém-Nascido , Humanos , Masculino , Feminino , Estudos de Coortes , Poluição por Petróleo/efeitos adversos , Nascimento Prematuro/epidemiologia , Avaliação de Resultados em Cuidados de Saúde
19.
Environ Health ; 22(1): 12, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36694171

RESUMO

BACKGROUND: Long-term neurological health risks associated with oil spill cleanup exposures are largely unknown. We aimed to investigate risks of longer-term neurological conditions among U.S. Coast Guard (USCG) responders to the 2010 Deepwater Horizon (DWH) oil spill. METHODS: We used data from active duty members of the DWH Oil Spill Coast Guard Cohort Study (N=45224). Self-reported oil spill exposures were ascertained from post-deployment surveys. Incident neurological outcomes were classified using International Classification of Diseases, 9th Revision, codes from military health encounter records up to 5.5 years post-DWH. We used Cox Proportional Hazards regression to calculate adjusted hazard ratios (aHR) and 95% confidence intervals (CI) for various incident neurological diagnoses (2010-2015). Oil spill responder (n=5964) vs. non-responder (n= 39260) comparisons were adjusted for age, sex, and race, while within-responder comparisons were additionally adjusted for smoking. RESULTS: Compared to those not responding to the spill, spill responders had reduced risks for headache (aHR=0.84, 95% CI: 0.74-0.96), syncope and collapse (aHR=0.74, 95% CI: 0.56-0.97), and disturbance of skin sensation (aHR=0.81, 95% CI: 0.68-0.96). Responders reporting ever (n=1068) vs. never (n=2424) crude oil inhalation exposure were at increased risk for several individual and grouped outcomes related to headaches and migraines (aHR range: 1.39-1.83). Crude oil inhalation exposure was also associated with elevated risks for an inflammatory nerve condition, mononeuritis of upper limb and mononeuritis multiplex (aHR=1.71, 95% CI: 1.04-2.83), and tinnitus (aHR=1.91, 95% CI: 1.23-2.96), a condition defined by ringing in one or both ears. Risk estimates for those neurological conditions were higher in magnitude among responders reporting exposure to both crude oil and oil dispersants than among those reporting crude oil only. CONCLUSION: In this large study of active duty USCG responders to the DWH disaster, self-reported spill cleanup exposures were associated with elevated risks for longer-term neurological conditions.


Assuntos
Militares , Doenças do Sistema Nervoso , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Humanos , Estudos de Coortes , Poluição por Petróleo/efeitos adversos , Seguimentos , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/epidemiologia
20.
Environ Res ; 217: 114841, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403648

RESUMO

BACKGROUND: During the 2010 Deepwater Horizon (DWH) disaster, in-situ burning and flaring were conducted to remove oil from the water. Workers near combustion sites were potentially exposed to burning-related fine particulate matter (PM2.5). Exposure to PM2.5 has been linked to increased risk of coronary heart disease (CHD), but no study has examined the relationship among oil spill workers. OBJECTIVES: To investigate the association between estimated PM2.5 from burning/flaring of oil/gas and CHD risk among the DWH oil spill workers. METHODS: We included workers who participated in response and cleanup activities on the water during the DWH disaster (N = 9091). PM2.5 exposures were estimated using a job-exposure matrix that linked modelled PM2.5 concentrations to detailed DWH spill work histories provided by participants. We ascertained CHD events as the first self-reported physician-diagnosed CHD or a fatal CHD event that occurred after each worker's last day of burning exposure. We estimated hazard ratios (HR) and 95% confidence intervals (95%CI) for the associations between categories of average or cumulative daily maximum PM2.5 exposure (versus a referent category of water workers not near controlled burning) and subsequent CHD. We assessed exposure-response trends by examining continuous exposure parameters in models. RESULTS: We observed increased CHD hazard among workers with higher levels of average daily maximum exposure (low vs. referent: HR = 1.26, 95% CI: 0.93, 1.70; high vs. referent: HR = 2.11, 95% CI: 1.08, 4.12; per 10 µg/m3 increase: HR = 1.10, 95% CI: 1.02, 1.19). We also observed suggestively elevated HRs among workers with higher cumulative daily maximum exposure (low vs. referent: HR = 1.19, 95% CI: 0.68, 2.08; medium vs. referent: HR = 1.38, 95% CI: 0.88, 2.16; high vs. referent: HR = 1.44, 95% CI: 0.96, 2.14; per 100 µg/m3-d increase: HR = 1.03, 95% CI: 1.00, 1.05). CONCLUSIONS: Among oil spill workers, exposure to PM2.5 from flaring/burning of oil/gas was associated with increased risk of CHD.


Assuntos
Doença das Coronárias , Desastres , Poluição por Petróleo , Humanos , Poluição por Petróleo/efeitos adversos , Material Particulado/análise , Seguimentos , Doença das Coronárias/induzido quimicamente , Doença das Coronárias/epidemiologia , Exposição Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...